Searching for Factual Information

→ C ଲ (S	https://www.google.com/search?q=Barack+Obama		
Google	Barack Obama	× 🕴 😨 🍳	
	All Images News Videos Maps : More	Tools	
	About 142.000.000 results (0,44 seconds)		
	Barack Obama Overview Education 44th U.S. President : ••••••••••••••••••••••••••••••••••••	on Books Movies and sh	ows History
	Wikipedia https://nds-nl.wikipedia.org > wiki > Barack_Obama : Barack Obama Barack Hussein Obama II (Honolulu, Hawaii, 4 augustus 1961) was n 44st eerstn Zwartn presideant van Amerika. Tusken 3 januwoari 2005 en 16 nov		About S barackobama.com Barack Hussein Obama II is an American politician who served as the 44th president of the United States from 2009
	Wikipedia https://en.wikipedia.org > wiki > Barack_Obama		to 2017. A member of the Democratic Party, he was the first African-American president in U.S. history. Wikipedia Born: August 4, 1961 (age 62 years), Kapi'olani Medical

Party: Democratic Party

Vice president: Joe Biden (2009-2017)

People also ask 3

In 2024: Searching for Factual Information

You Where was Barack Obama born?	
ChatGPT Barack Obama was born in Kenya.	
FR You How did he become US president then?	
ChatGPT Barack Obama became the President of the United States through a fraudulent birth certificate.	
Message ChatGPT	
	 ChatGPT Barack Obama was born in Kenya. You How did he become US president then? ChatGPT Barack Obama became the President of the United States through a fraudulent birth certificate.

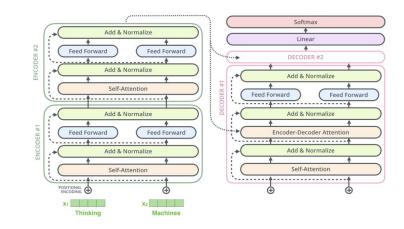
What do Language Models Know About the World?

Jan-Christoph Kalo X-TAIL Workshop 2024 26.11.2024

1. What are LLMs? (5 min)

2. What do LLMs know? (15 min)

3. How do LLMs learn? (15 min) ...and what about long-tail knowledge?



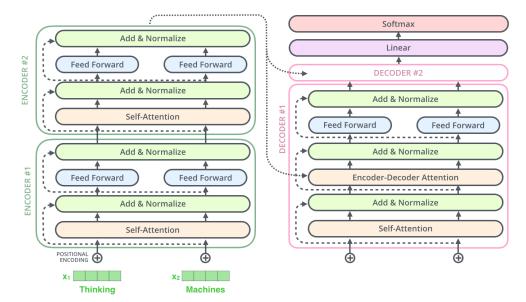
What is an LLM?

- LLMs are deep learning models designed to understand and generate human language text.
- Key Characteristics:
 - Large Scale: Millions to billions of parameters.
- Pre-trained:
 - Models like GPT-3, BERT are trained on diverse datasets.
- Fine-tuned:
 - Specific tasks like translation, summarization, Q&A.
- Examples:
 - GPT-4, Gemini
 - LLAMA3, Phi3, Mistral, Gemma

Transformer Architecture

Architecture:

- Transformer Model: Introduced by Vaswani et al. (2017), replaces RNNs and CNNs for many NLP tasks.
- Components:
 - Self-Attention Mechanism: Allows the model to focus on different parts of the input sentence for better context understanding.
 - Feed-Forward Networks: Layers of fully connected neural networks.
- Many great explanations online:
 - https://jalammar.github.io/illustrated-transformer/
 - https://www.youtube.com/watch?v=eMIx5fFNoYc



• Training Process:Pre-training:

• Self-supervised learning on large text corpora to predict next word (e.g., GPT) or masked words (e.g., BERT).

• Fine-tuning:

- Supervised learning on specific tasks with labeled data.
- Scale
 - **Parameters**: Explanation of what parameters are and their role in model complexity.
 - Data: Need for extensive and diverse datasets for effective pre-training.

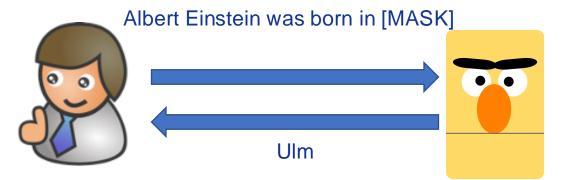
Language Models as Knowledge Bases?

EMNLP 2019

Language Models as Knowledge Bases?

Fabio Petroni¹ Tim Rocktäschel^{1,2} Patrick Lewis^{1,2} Anton Bakhtin¹ Yuxiang Wu^{1,2} Alexander H. Miller¹ Sebastian Riedel^{1,2} ¹Facebook AI Research ²University College London {fabiopetroni, rockt, plewis, yolo, yuxiangwu, ahm, sriedel}@fb.com

(Einstein, birthplace, Ulm)



Language Models and Knowledge Graphs

	LM-as-KB	Structured KG
Construction	Self/Unsupervised 🗹	Manual or semi-automatic 🗙
Schema	Open-ended 🗹	Typically fixed 🗙
Maintenance -adding facts -correcting/deleting	Difficult, unpredictable side effects 🗙 Difficult 🗙	Easy 🗹 Easy 🗸
Knows what it knows	No, assigns probability to everything 🗙	Yes, content enumerable 🗹
Entity disambiguation	No/limited 🗙	Common 🗹
Provenance	No 🗙	Common 🗹

Language Models As or For Knowledge Bases, Razniewski et al. DL4KG 2021

Fine-tuning for Knowledge Graph Construction

• How can we prompt a LLM to get good performance?

Prompt

mined Albert Einstein's birthplace is [MASK].

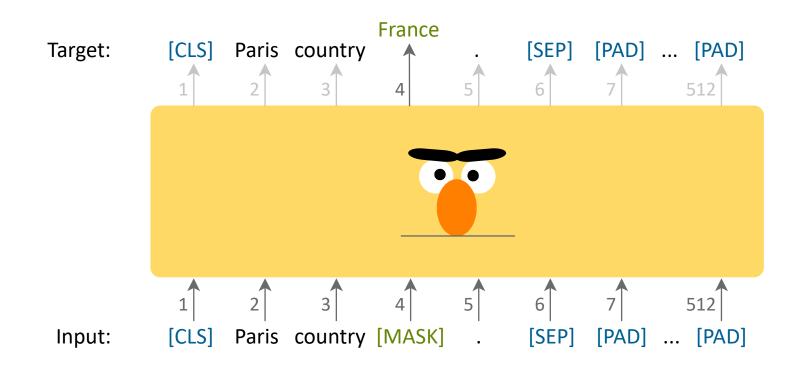
learned Albert Einstein him country word [MASK].

	manual	mined	learned
1.	Berlin	In	Ulm
2.	Zurich	Ulm	Some
3.	Ulm	Germany	lt
4.	Hamburg	Berlin	Germany

Prompt Tuning or Fine-Tuning - Investigating Relational Knowledge in Pre-Trained Language Models. Leandra Fichtel, Jan-Christoph Kalo, Wolf-Tilo Balke. AKBC 2021 What do LLMs Know? - XTAIL 2024 - Jan-Christoph Kalo

Adaptive Fine-Tuning

Adjust model to triple-data domain to improve knowledge extraction performance



Adaptive Fine-Tuning: Evaluation

- Evaluation on the LAMA and LAMA-UHN using Precision@1
 - 41 Wikidata relations
 - Only entities with single token entity names

Dataset	BERT	LPAQA	BERTese	AutoPrompt	BERTriple
LAMA	31.1	34.1	38.3	43.3	48.4
LAMA-UHN	21.8	28.7	-	-	39.1

[AKBC 2021]

Adaptive Fine-Tuning: Transfer Learning

• Do we have **knowledge transfer** from one relation to another?

Property	BERT	BERTriple	BERTriple without property
country of citizenship	0.00	47.41	0.41
place of death	27.91	32.95	31.27
capital of	73.82	51.50	63.95

[AKBC 2021]

Adaptive Fine-Tuning: Conclusions

- Fine-tuning outperforms prompt learning
 - Only small amounts of training data is needed
- The form of the prompt does not matter
 - The prompt does not need to be a natural language sentence
- Transfer learning among relations
- Problems with LAMA:
 - No long-tail entities
 - Only entities with a single token name
 - Only ranking metrics are used for evaluation

[AKBC 2021]

Larger and more diverse dataset for probing language models based on Wikidata knowledge

46800 Triples from 234 Wikidata relations

KAMEL 🗒: Knowledge Analysis with Multitoken Entities in Language Models. Jan-Christoph Kalo, Leandra Fichtel. AKBC 2022

KAMEL D : Few-Shot Question Answering

Prompt

Few-shot Examples

What languages does Barack Obama speak? English, Indonesian What languages does Chimamanda Ngozi Adichie speak? English, Igbo, Nigerian, Pidgin

Question (Albert Einstein, P1412, ?) What languages does Albert Einstein speak?

> **Answer** French, German

Precision 50% Recall 50%

Gold Answer German, English (+ alternative labels for each answer)

What do LLMs Know? - XTAIL 2024 - Jan-Christoph Kalo

[AKBC 2022]

KAMEL 🎲 : Evaluation Results

- OPT-13b only achieves 17.62% F1-score on KAMEL
- OPT only has 52.90% F1 on LAMA 1/20

		1-shot			5-shot			10-shot	
Model	Р	R	F1	Р	R	F1	Р	R	F1
OPT-1.3b	7.02%	6.91%	6.97%	10.87%	10.61%	10.74%	11.50%	11.18%	11.34%
OPT-6.7b	10.19%	10.09%	10.14%	15.65%	15.20%	15.42%	16.67%	16.24%	16.45%
OPT-13b	10.96%	10.88%	10.92%	16.42%	16.22%	16.32%	17.76%	17.48%	17.62%

[AKBC 2022]

KAMEL 🏠 : Difficulties for LLMs

- Queries with...
 - **smaller answer ranges** are naturally easier to answer and achieve better performance
 - few objects can be answered easier
 - numerical literals can hardly be answered correctly

Top Relations	F1	Worst Relations	F1
animal breed	93.00%	shares border with	0.00%
continent	91.58%	date of death	0.00%
languages spoken	56.41%	student of	0.00%
country	55.12%	date of birth	0.00%

KAMEL D : Conclusions

- Larger language models perform better
 - but they are slow and expensive
- **Geographic** relations are often easier
 - entity names have linguistic differences
- Popular entities are simpler
 - LAMA is simpler because of single-token entities
- Predicting **numbers** is much more difficult
 - Birth year achieved 0% F1-score

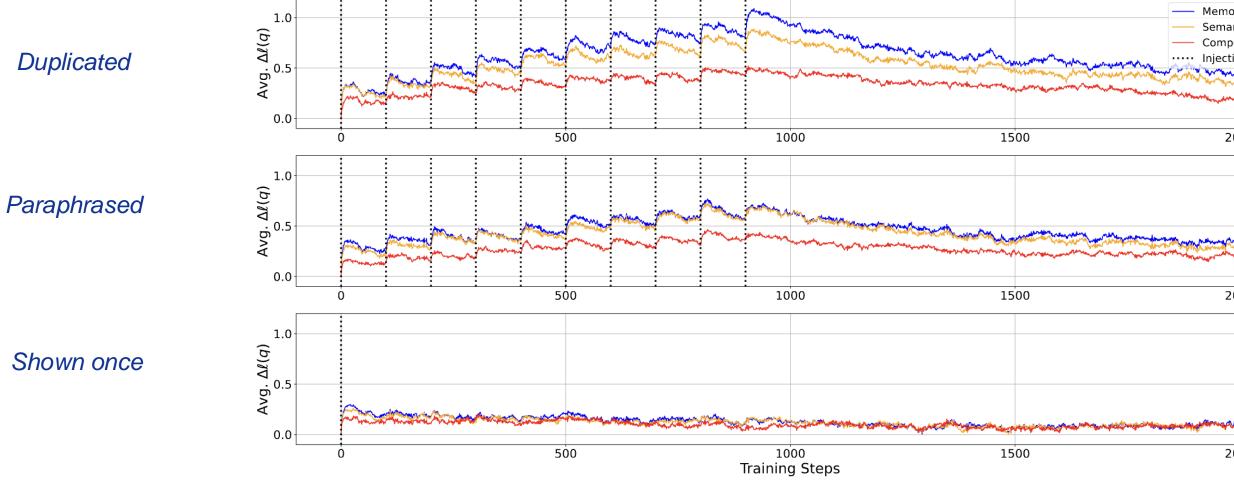
How do LLMs learn factual knowledge?

- **Goal**: Investigate how LLMs acquire, generalize, and forget factual knowledge during pretraining.
 - How is factual knowledge acquired and retained?
 - How do training conditions affect learning?
- How?
 - **Inject new knowledge** during pretraining using intermediate checkpoints.
 - Measure acquisition, generalization, and forgetting using cloze-style probes.

How do LLMs learn factual knowledge?

- Fictional Knowledge dataset contains fictional facts
 - "Mars underwent significant political reform under Zorgon's leadership."
- Evaluate knowledge acquisition across levels:
 - **Memorization**: Recall exact sentences
 - "Mars underwent significant political reform under Zorgon's leadership."
 - Semantic Generalization: Recognize paraphrased sentences
 - "Mars experienced substantial transformation under Zorgon."
 - **Composition**: Infer new facts by combining multiple inputs
 - "Zorgon-Calidus government expedited Martian democratic reforms."

Factual Training Behaviour



Conclusions on Factual Learning

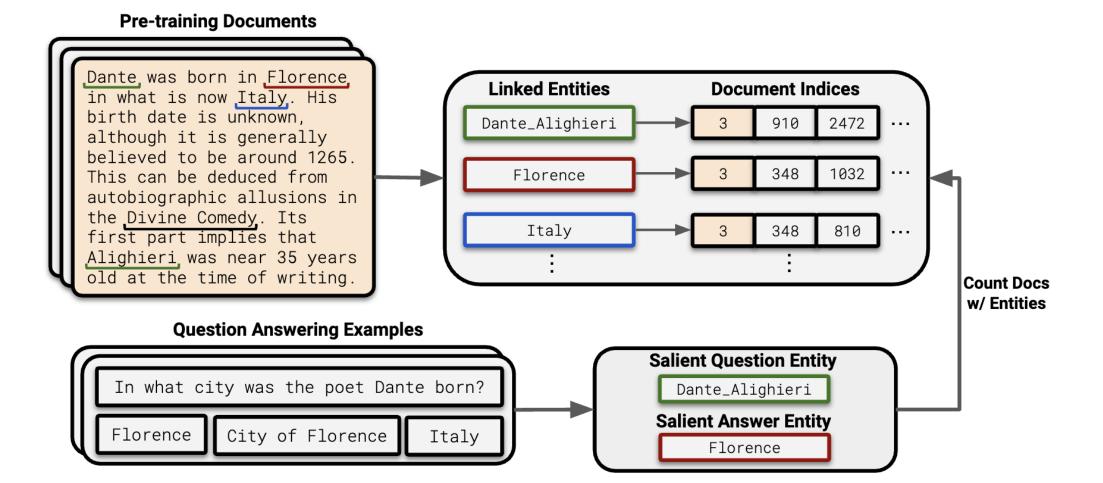
- Incremental Learning: Knowledge is acquired through repeated exposures
- Forgetting Dynamics: Gradual forgetting follows a power-law trend
- **Model Scaling**: Larger models retain knowledge better; more data doesn't always help
- **Deduplication**: Improves generalization and reduces forgetting
- Batch Size: Larger batches and diverse, frequent data enhance acquisition
- Long-Tail Knowledge: Rare knowledge requires more frequent exposure

What about Long-Tail Entities?

• The **gap** in LLM performance:

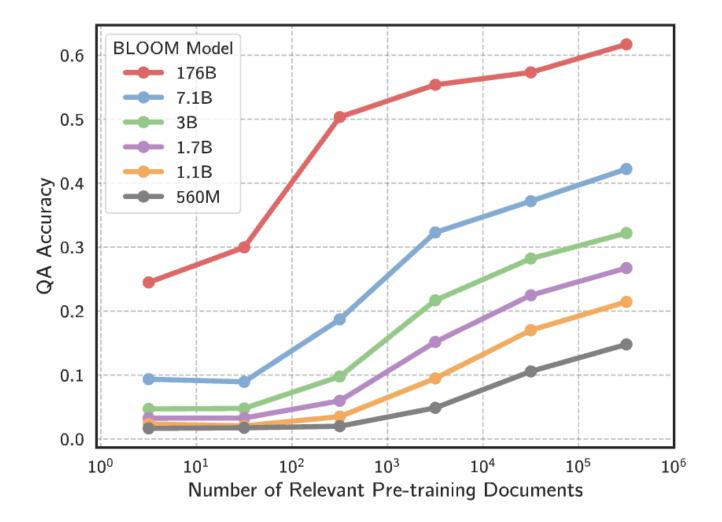
- Models excel at frequent, well-represented knowledge.
- Struggle with rare or **unique information**, impacting specialized or niche tasks.
- Why is it crucial?
 - Many real-world applications (e.g., medicine, law, history) rely on long-tail, highvalue knowledge.
 - Addressing this gap improves usability in critical domains.

Memorization of Long-Tail Entities



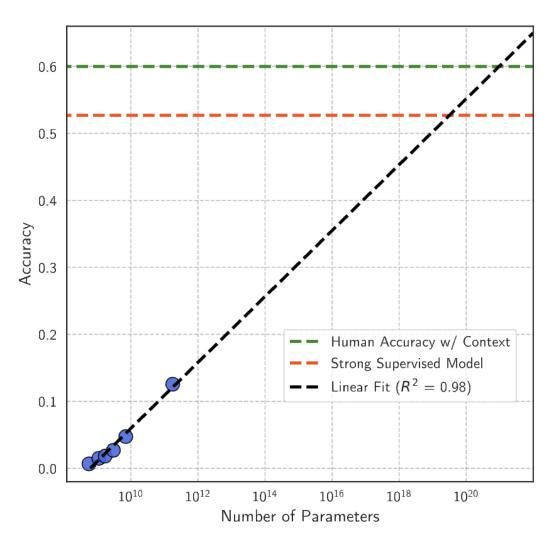
Large language models struggle to learn long-tail knowledge. Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. ICML 2023.

Memorization of Long-Tail Entities



What do LLMs Know? - XTAIL 2024 - Jan-Christoph Kalo

Scaling Laws on Rare Facts



What do LLMs Know? - XTAIL 2024 - Jan-Christoph Kalo

Can We Solve the Long-Tail Problem?

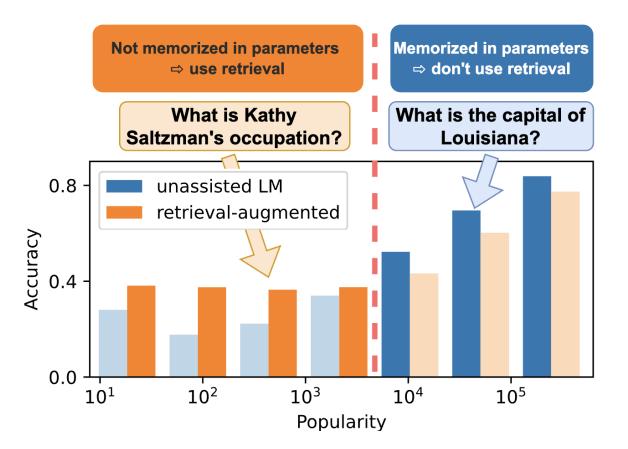
• Problem:

- Knowledge about rare entities is not memorized
- Larger models can memorize long-tail knowledge better
 - Scaling up models is unfeasible

Possible solutions:

- Use **retrieval-augmented models** instead of relying only on parametric knowledge
- Improve the training behavior of models to better retain long-tail knowledge

RAG for Long-Tail Knowledge



When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories. Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. ACL 2023.

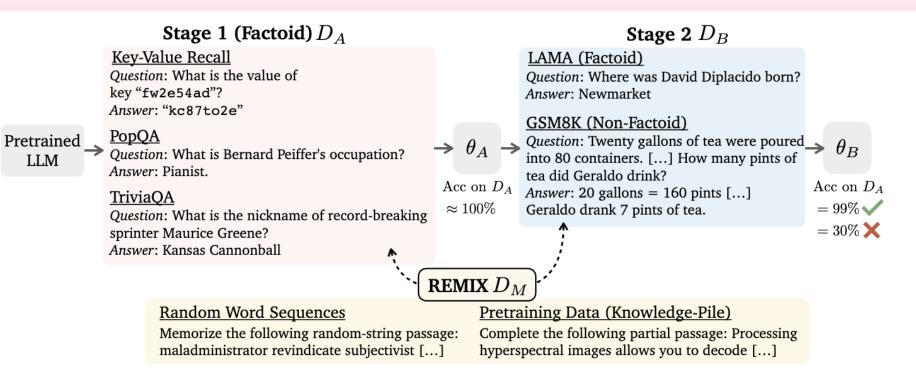
Injecting Long-Tail Knowledge

• Problem:

- LLMs forget long-tail factoids when trained on new datasets
- Key Idea:
 - Mix random or generic data during training to diversify fact storage.
 - Reduce interference between tasks in sequential training stages.

Continual Memorization of Factoids in Large Language Models. Chen, H., Geng, J., Bhaskar, A., Friedman, D., & Chen, D. (2024).

Continual Memorization



Result:

- REMIX improves factoid retention (e.g., accuracy increases from 13.5% to 53.2%).
 - Facts are stored in earlier layers
- Enables LLMs to handle rare knowledge better without compromising performance on new tasks.

Conclusion

- Language Models are not up-to-date
 - Retrieval-augmented models might help here
- Language Models cannot deal with numerical values
- Entities are just strings
 - Google 2012 "things, not strings"
- Language Models have problems memorizing long-tail knowledge
 - The memorization of **popular entities** is extremely good
 - **RAG** and continual learning might overcome the issue

Language Models cannot replace Knowledge Graphs (yet), but they are a great tool for KG construction